4.6 Article

Determinants of seston C : P-ratio in lakes

Journal

FRESHWATER BIOLOGY
Volume 51, Issue 8, Pages 1560-1569

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2427.2006.01594.x

Keywords

carbon; lakes; light; nutrients; phosphorus; seston; stoichiometry

Ask authors/readers for more resources

1. The ratio of carbon to phosphorus (C : P) in seston is a major determinant of energy transfer in aquatic food webs and may vary more than an order of magnitude owing to various extrinsic and intrinsic factors. In this study, the determinants of C : P-ratios in lake particulate matter (seston) was assessed in 112 Norwegian lakes, covering a C : P (atomic ratio) from 24 to 1842 (mean 250). 2. No overall effects of lake area, season or latitude on C : P was detected. Particulate P, but not particulate C, correlated with C : P. Multivariate analysis including a range of lake properties revealed total dissolved P, as the major determinant of sestonic C : P, with the fraction of detritus in total seston, chlorophyll or Secchi depth and lake colour as significant contributors. Together these parameters explained 30% of observed variance if using dissolved P and 81% if using total P as input variable to the multivariate model. 3. Chlorophyll and Secchi depth were highly correlated and substitutable in the analysis. Phytoplankton community composition did not affect seston C : P, probably reflecting the fact that live phytoplankton generally contributed < 25% of the seston pool. 4. Total P correlated positively with C : P and is the key determinant of phytoplankton biomass and thus Secchi depth; the latter parameters contributed negatively to seston C : P, probably owing to increased light attenuation. These lake data thus support the light : nutrient ratio hypothesis, i.e. that high light and low P cause skewed uptake ratios of C to P. 5. Zooplankton biomass in general and Daphnia biomass in particular, was negatively correlated with C : P, probably reflecting a negative impact of poor seston quality at high C : P. Zooplankton grazing and nutrient recycling may also have contributed to a negative correlation between zooplankton biomass and sestonic C : P.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available