4.0 Article

Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering

Journal

TISSUE ENGINEERING
Volume 12, Issue 8, Pages 2333-2341

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/ten.2006.12.2333

Keywords

-

Ask authors/readers for more resources

We have developed a photopolymerizable styrenated gelatin that can cross-link through polymerization induced by irradiation with visible light. The purpose of this study was to investigate the feasibility of using photopolymerizable styrenated gelatin as a cell carrier in chondrocyte transplantation. As visible light activates camphorquinone added as a photoinitiator, free radicals induce the polymerization of the gelatin macromer; the styrenated gelatin then becomes cross-linked. Rabbit articular chondrocytes were cultured in styrenated gelatin hydrogels and also in collagen gels as a control. After being cultured in the gels, the cells were collected from both gels and counted. Reverse transcriptase-polymerase chain reaction, histological examination, and quantification of the synthesized glycosaminoglycan were performed. On average, 26% of the embedded cells were collected from the gelatin hydrogel immediately after the crosslinking reaction. The surviving chondrocytes expressed the mRNA of type II collagen and aggrecan core protein and produced a cartilaginous matrix throughout the gelatin after 3 weeks. A slightly insufficient accumulation of the matrix was found in the internal region of the gelatin hydrogels, suggesting that less permeability for nutrients due to the high concentration and closely packed structure resulted in less cell viability. Although some limitations became evident, these results indicate that it may be possible to use photopolymerizable styrenated gelatin as a cell carrier in chondrocyte transplantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available