4.4 Article

Optimal production of poly-γ-glutamic acid by metabolically engineered Escherichia coli

Journal

BIOTECHNOLOGY LETTERS
Volume 28, Issue 16, Pages 1241-1246

Publisher

SPRINGER
DOI: 10.1007/s10529-006-9080-0

Keywords

Escherichia coli; metabolic engineering; nitrogen starvation; poly-gamma-glutamic acid; process optimization

Ask authors/readers for more resources

Metabolically-engineered Escherichia coli strains were developed by cloning poly-gamma-glutamic acid (gamma-PGA) biosynthesis genes, consisting of pgsB, pgsC and pgsA, from Bacillus subtilis The metabolic and regulatory pathways of gamma-PGA biosynthesis in E. coli were analyzed by DNA microarray. The inducible trc promoter and a constitutive promoter (P-HCE) derived from the D-amino acid aminotransferase (D-AAT) gene of Geobacillus toebii were employed. The constitutive HCE promoter was more efficient than inducible trc promoter for the expression of gamma-PGA biosynthesis genes. DNA microarray analysis showed that the expression levels of several NtrC family genes, glnA, glnK, glnG, yhdX, yhdY, yhdZ, amtB, nac, argT and cbl were up-regulated and sucA, B, C, D genes were down-regulated. When (NH4)(2)SO4 was added at 40 g/l into the feeding solution, the final gamma-PGA concentration reached 3.7 g/l in the fed-batch culture of recombinant E. coli/pCOpgs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available