4.7 Article

Analysis of combined thermal and magnetic convection ferrofluid flow in a cavity

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.icheatmasstransfer.2006.02.001

Keywords

ferrofluid; magnetic field strength; ferro-hydrodynamic interaction

Ask authors/readers for more resources

A numerical analysis of the magnetic gradient and thermal buoyancy induced cavity ferrofluid flow is conducted by a semi-implicit finite element method. The physical model for a square cavity containing two different temperature side walls and a magnet near bottom wall is described by mass, momentum and energy equations. Conditions for the fixed Prandtl number, Rayleigh number and different ferro-hydrodynamic interaction parameter are studied for 5 x 10(8) <= beta <= 1.6 x 10(10). Results show the flow strength increases with the strengthening magnetic field. However, the side-wall heat transfer rate presents a decrease trend with the increase in magnetic field strength, for the magnet located near the bottom central area evokes the circulation to move toward the central portion. In summary, a proper choice of magnet strength and location can adjust the flow field and local heat transfer rate to fit the practical application. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available