4.8 Article

Selection of tumor-binding ligands in cancer patients with phage display libraries

Journal

CANCER RESEARCH
Volume 66, Issue 15, Pages 7724-7733

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-05-4441

Keywords

-

Categories

Funding

  1. NCI NIH HHS [R21 CA 97679] Funding Source: Medline
  2. NCRR NIH HHS [M01 RR 00109] Funding Source: Medline
  3. PHS HHS [P30 22435] Funding Source: Medline

Ask authors/readers for more resources

Phage display has been used extensively in vitro and in animal models to generate ligands and to identify cancer-relevant targets. We report here the use of phage-display libraries in cancer patients to identify tumor-targeting ligands. Eight patients with stage IV cancer, including breast, melanoma, and pancreas, had phage-displayed random peptide or scFv library (1.6 x 10(8)-1 x 10(11) transducing units/kg) administered i.v.; tumors were excised after 30 minutes; and tumor-homing phage were recovered. In three patients, repeat panning was possible using phage recovered and amplified from that same patient's tumor. No serious side effects, including allergic reactions, were observed with up to three infusions. Patients developed antiphage antibodies that reached a submaximal level within the 10-day protocol window for serial phage administration. Tumor phage were recoverable from all the patients. Using a filter-based ELISA, several clones from a subset of the patients were identified that bound to a tumor from the same patient in which clones were recovered. The clone-binding to tumor was confirmed by immunostaining, bioassay, and real-time PCR-based methods. Binding studies with noncancer and cancer cell lines of the same histology showed specificity of the tumor-binding clones. Analysis of insert sequences of tumor-homing peptide clones showed several motifs, indicating nonrandom accumulation of clones in human tumors. This is the first reported series of cancer patients to receive phage library for serial panning of tumor targeting ligands. The lack of toxicity and the ability to recover clones with favorable characteristics are a first step for further research with this technology in cancer patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available