4.5 Article

Spray characterization in high pressure environment using optical line patternator

Journal

MEASUREMENT SCIENCE AND TECHNOLOGY
Volume 17, Issue 8, Pages 2159-2167

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-0233/17/8/015

Keywords

spray; imaging technique; extinction; high ambient pressure; patternation

Ask authors/readers for more resources

For the quantitative measurement in an optically dense spray, the intensity of the attenuated signal should be corrected. Therefore, the optical line patternator was applied to get the original distribution of the dense spray injected from a swirl injector at high ambient pressure up to 4.0 MPa. The optical line patternator is a combined technique of laser extinction measurement and image processing for the spray characterization. The spray was scanned with the laser beam and the line image of Mie scattering was captured simultaneously in the path of each laser beam by using a CCD camera. A photo-diode was used to obtain the transmission data that was the amount of the incident laser beam passing through the spray region. The distribution of the attenuation coefficients in the spray was obtained by processing the transmission data and Mie-scattering distribution data by an algebraic reconstruction technique. From the distribution of attenuation coefficients, we can obtain the accurate surface distribution from the Mie-scattering signal. Because the optical line patternator uses a laser beam instead of a laser sheet to scan the spray, the effect of multiple scattering, due to the increased number density of droplets in a high pressure environment is reduced significantly. The optical line patternator is suitable for investigating the characteristics of a relatively large spray under high pressure environments such as liquid rocket engines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available