4.5 Article

Temporal and spatial alterations in GPi neuronal encoding might contribute to slow down movement in Parkinsonian monkeys

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 24, Issue 4, Pages 1201-1208

Publisher

WILEY
DOI: 10.1111/j.1460-9568.2006.04984.x

Keywords

basal ganglia; globus pallidus; MPTP-monkey; Parkinson's disease; single-unit electrophysiology

Categories

Ask authors/readers for more resources

Although widely investigated, the exact relationship between changes in basal ganglia neuronal activity and parkinsonian symptoms has not yet been deciphered. It has been proposed that bradykinesia (motor slowness) is related either to a modification of the activity of the globus pallidus internalis (GPi), the main output structure, or to a loss of spatial selectivity of the extrapyramidal motor system. Here we investigate the relationship between movement initiation and GPi activity in parkinsonian non-human primates. We compare neuronal encoding of movement in the normal and pathological conditions. After dopamine depletion, we observe an increased number of neurons responding to movement, with a less specific somato-sensory receptive field and a disruption of the selection mechanism. Moreover, the temporal order of the response of GPi neurons in parkinsonian animals is reversed. Indeed, whereas muscle activity and movement are delayed in parkinsonian animals, GPi neuronal responses to movement occur earlier and are prolonged, compared with normal conditions. Parkinsonian bradykinesia could thus result from an impairment of both temporal and spatial specificity of the GPi response to movement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available