4.8 Article

The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes

Journal

BIOMATERIALS
Volume 27, Issue 24, Pages 4340-4347

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2006.04.012

Keywords

muscle; micropatterning; silicone elastomer.; cell adhesion; laminin; surface topography

Funding

  1. NIA NIH HHS [T32 AG000114, T32 AG00114] Funding Source: Medline
  2. NIBIB NIH HHS [EB003793-01] Funding Source: Medline

Ask authors/readers for more resources

Tissue-engineered muscle is a viable option for tissue repair, though presently technologies are not developed enough to produce tissue in vitro identical to that in vivo. One important step in generating accurate engineered muscle is to mimic natural muscle architecture. Skeletal muscle is composed of fibrils whose organization defines functionality. In musculoskeletal myogenesis, aligning myoblasts in preparation for myotube formation is a crucial step. The ability to efficiently organize myoblasts to form aligned myotubes in vitro would greatly benefit efforts in muscle tissue engineering. This paper reports alignment of prefused and differentiated skeletal muscle cells in vitro by use of continuous micropatterned wavy silicone surfaces, with features sized 3, 6 and 12 mu m in periodicity. Wave features with 6 mu m periodicity produced the most healthy, aligned myoblasts. Alignment was found to be a function of plating density. Further growth on these substrates with aligned myoblasts promoted fusion, yielding healthy aligned myotubes. This method will be useful for applications in which differentiated myogervic cells need to be aligned unidirectionally as in the development of engineered muscle. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available