4.4 Article

Population divergence in plasticity of the AVT system and its association with aggressive behaviors in a Death Valley pupfish

Journal

HORMONES AND BEHAVIOR
Volume 50, Issue 2, Pages 183-193

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.yhbeh.2006.02.010

Keywords

phenotypic plasticity; aggression; social behavior; vasotocin; vasopressin; development; evolutionary endocrinology; osmoregulation; evolution; fish

Funding

  1. NIDCD NIH HHS [DC 03174] Funding Source: Medline

Ask authors/readers for more resources

Behavioral differences can evolve rapidly in allopatry, but little is known about the neural bases of such changes. Allopatric populations of Amargosa pupfish (Cyprinodon nevadensis) vary in aggression and courtship behaviors in the wild. Two of these wild populations were recently found to differ in brain expression of arginine vasotocin (AVT)-a peptide hormone shown previously to modulate aggression in pupfish. These populations have been isolated for less than 4000 years, so it remained unclear whether the differences in behavior and neural AVT phenotype were evolved changes or plastic responses to ecologically dissimilar habitats. Here, I tested whether these population differences have a genetic basis by examining how aggressive behavior and neural AVT phenotype responded to ecologically relevant variation in salinity (0.4 ppt or 3 ppt) and temperature (stable or daily fluctuating). Pupfish from Big Spring were more aggressive than pupfish from the Amargosa River when bred and reared under common laboratory conditions. Morphometric analysis of preoptic AVT immunoreactivity showed that the populations differed in how the AVT system responded to salinity and temperature conditions, and revealed that this plasticity differed between parvocellular and magnocellular AVT neuron groups. Both populations also showed relationships between neural AVT phenotype and aggression in the rearing environment, although populations differed in how aggression related to variation in magnocellular AVT neuron size. Together, these results demonstrate that the pupfish populations have diverged in how physical and social conditions affect the AVT system, and provide evidence that the AVT system can evolve quickly to ecologically dissimilar environments. (c) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available