4.7 Review

Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 63, Issue 15, Pages 1736-1751

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-006-6072-0

Keywords

adenylyl cyclase; cAMP; regulation; catalysis; structural transition

Ask authors/readers for more resources

Class III adenylyl cyclases are the most abundant type of cyclic AMP-producing enzymes. The adjustment of the cellular levels of this second messenger is achieved by a variety of regulatory mechanisms which couple signals to adenylyl cyclase activity. Because of the divergent nature of stimuli which impinge on these enzymes, highly individualized class III adenylyl cyclases have evolved in metazoans, eukaryotic unicells and bacteria. Regulation usually exploits the dimeric structure of the catalyst, whose active centres form at the dimer interface. The fold of the catalytic domains and the basic catalytic mechanisms are similar in all class III adenylyl cyclases, and substrate binding generally closes the active site by an induced-fit mechanism. Regulatory inputs can result in dramatic rearrangements of the catalytic domains within the dimer, which often are based on rotational movements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available