4.1 Article

Expression profiles of Na+,K+-ATPase during acute and chronic hypo-osmotic stress in the blue crab Callinectes sapidus

Journal

BIOLOGICAL BULLETIN
Volume 211, Issue 1, Pages 58-65

Publisher

UNIV CHICAGO PRESS
DOI: 10.2307/4134578

Keywords

-

Ask authors/readers for more resources

During acclimation to dilute seawater, the specific activity of Na+,K+-ATPase increases substantially in the posterior gills of the blue crab Callinectes sapidus. To determine whether this increase occurs through regulation of pre-existing enzyme or synthesis of new enzyme, mRNA and protein levels were measured over short (< 24 h) and long (18 days) time courses. Na+,K+-ATPase expression, both mRNA and protein, did not change during the initial 24-h exposure to dilute seawater (10 ppt salinity). Thus, osmoregulation in C. sapidus during acute exposure to low salinity likely involves either modulation of existing enzyme or mechanisms other than an increase in the amount of Na+,K+-ATPase enzyme. However, crabs exposed to dilute seawater over 18 days showed a 300% increase in Na+,K+-ATPase specific activity as well as a 200% increase in Na+,K+-ATPase protein levels. Thus, it appears that the increase in Na+,K+-ATPase activity during chronic exposure results from the synthesis of new enzyme. The relative amounts of mRNA for the a-subunit increased substantially (by 150%) during the acclimation process, but once the crabs had fully acclimated to low salinity, the mRNA levels had decreased and were not different from levels in crabs fully acclimated to high salinity. Thus, there is transient induction of the Na+,K+-ATPase mRNA levels during acclimation to dilute seawater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available