3.8 Article

Fungal surface remodelling visualized by atomic force microscopy

Journal

MYCOLOGICAL RESEARCH
Volume 110, Issue -, Pages 879-886

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mycres.2006.06.010

Keywords

adhesion; Aspergillus nidulans; atomic force microscopy; conidia; force spectroscopy; fungi; germination; hypA1, morphological mutant; scanning electron microscopy; temperature shifts

Categories

Ask authors/readers for more resources

Most fungal growth is localized to the tips of hyphae, however, early stages of spore germination and the growth of certain morphological mutant strains exhibit non-polarized expansion. We used atomic force microscopy (AFM) to document changes in Aspergillus nidulans wall surfaces during non-polarized growth: spore germination, and growth in a strain containing the hypA1 temperature sensitive morphogenesis defect. We compared wall surface structures of both wild-type and mutant A. nidulans following growth at 28 degrees and 42 degrees C, the latter being the restrictive temperature for hypA1. There was no appreciable difference in surface ultrastructure between wild-type and hypA1 spores, or hyphal walls grown at 28 degrees C. When dry mature A. nidulans conidia were wetted they lost their hydrophobin coat, indicating an intermediate stage between dormancy and swelling. The surface structure of hypA1 germlings grown at 42 degrees C was less organized than wild-type hyphae grown under the same conditions, and had a larger range of subunit sizes. AFM images of hyphal wall surface changes following a shift in growth temperature from restrictive (42 degrees C) to permissive (28 degrees C), showed a gradient of sizes for wall surface features similar to the trend observed for wild-type cells at branch points. Changes associated with the hyphal wall structure for A. nidulans hypA1 offer insight into the events associated with fungal germination, and wall remodelling. (c) 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available