4.0 Article

Low-Density Lipoprotein Receptor Gene Familial Hypercholesterolemia Variant Database: Update and Pathological Assessment

Journal

ANNALS OF HUMAN GENETICS
Volume 76, Issue -, Pages 387-401

Publisher

WILEY
DOI: 10.1111/j.1469-1809.2012.00724.x

Keywords

Familial hypercholesterolemia; LDLR; locus specific variant database; in silico pathogenicity prediction

Funding

  1. British Heart Foundation [PG08/008]
  2. NIH
  3. HEFSE
  4. British Heart Foundation [RG/08/008/25291] Funding Source: researchfish

Ask authors/readers for more resources

Familial hypercholesterolemia (FH) is caused predominately by variants in the low-density lipoprotein receptor gene (LDLR). We report here an update of the UCL LDLR variant database to include variants reported in the literature and in-house between 2008 and 2010, transfer of the database to LOVDv.2.0 platform (https://grenada.lumc.nl/LOVD2/UCL-Heart/home.php?select_db=LDLR) and pathogenicity analysis. The database now contains over 1288 different variants reported in FH patients: 55% exonic substitutions, 22% exonic small rearrangements (<100 bp), 11% large rearrangements (>100 bp), 2% promoter variants, 10% intronic variants and 1 variant in the 3' untranslated sequence. The distribution and type of newly reported variants closely matches that of the 2008 database, and we have used these variants (n= 223) as a representative sample to assess the utility of standard open access software (PolyPhen, SIFT, refined SIFT, Neural Network Splice Site Prediction Tool, SplicePort and NetGene2) and additional analyses (Single Amino Acid Polymorphism database, analysis of conservation and structure and Mutation Taster) for pathogenicity prediction. In combination, these techniques have enabled us to assign with confidence pathogenic predictions to 8/8 in-frame small rearrangements and 8/9 missense substitutions with previously discordant results from PolyPhen and SIFT analysis. Overall, we conclude that 79% of the reported variants are likely to be disease causing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available