4.8 Article

Arp2/3 ATP hydrolysis-catalysed branch dissociation is critical for endocytic force generation

Journal

NATURE CELL BIOLOGY
Volume 8, Issue 8, Pages 826-U71

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb1443

Keywords

-

Categories

Funding

  1. NIGMS NIH HHS [R01 GM059609, R01 GM059609-07, GM50399, GM59609, GM42759] Funding Source: Medline

Ask authors/readers for more resources

The Arp2/3 complex, which is crucial for actin-based motility, nucleates actin filaments and organizes them into y-branched networks. The Arp2 subunit has been shown to hydrolyse ATP, but the functional importance of Arp2/3 ATP hydrolysis is not known. Here, we analysed an Arp2 mutant in Saccharomyces cerevisiae that is defective in ATP hydrolysis. Arp2 ATP hydrolysis and Arp2/3-dependent actin nucleation occur almost simultaneously. However, ATP hydrolysis is not required for nucleation. In addition, Arp2 ATP hydrolysis is not required for the release of a WASP-like activator from y-branches. ATP hydrolysis by Arp2, and possibly Arp3, is essential for efficient y-branch dissociation in vitro. In living cells, both Arp2 and Arp3 ATP-hydrolysis mutants exhibit defects in endocytic internalization and actin-network disassembly. Our results suggest a critical feature of dendritic nucleation in which debranching and subsequent actin-filament remodelling and/or depolymerization are important for endocytic vesicle morphogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available