4.6 Article

Induction of cytotoxic granules in human memory CD8+ T cell subsets requires cell cycle progression

Journal

JOURNAL OF IMMUNOLOGY
Volume 177, Issue 3, Pages 1981-1987

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.177.3.1981

Keywords

-

Categories

Funding

  1. NCI NIH HHS [R01 CA90575] Funding Source: Medline

Ask authors/readers for more resources

Memory CD8(+) T cell responses are thought to be more effective as a result of both a higher frequency of Ag-specific clones and more rapid execution of effector functions such as granule-mediated lysis. Murine models have indicated that memory CD8(+) T cells exhibit constitutive expression of perforin and can lyse targets directly ex vivo. However, the regulated expression of cytotoxic granules in human memory CD8(+) T cell subsets has been underexplored. Using intracellular flow cytometry, we observed that only a minor fraction of CD45RA(-)CD8(+) T cells, or of CD8(+) T cells reactive to EBV-HLA2 tetramer, expressed intracellular granzyme B (GrB). Induction of GrB-containing cytotoxic granules in both CD45RA(+) and CD45RA(-) cells was achieved by stimulation with anti-CD3/anti-CD28 mAb-coated beads, required at least 3 days, occurred after several rounds of cell division, and required cell cycle progression. The strongest GrB induction was seen in the CCR7(+) subpopulations, with poorest proliferation being observed in the CD45RA(-)CCR7(-) effector-memory pool. Our results indicate that, as with naive T cells, induction of cytotoxic granules in human Ag-experienced CD8(+) T cells requires time and cell division, arguing that the main numerical advantage of a memory T cell pool is a larger frequency of CTL precursors. The fact that granule induction can be achieved through TCR and CD28 ligation has implications for restoring lytic effector function in the context of antitumor immunity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available