4.5 Article

Entry and intracellular replication of Mycobacterium tuberculosis in cultured human microvascular endothelial cells

Journal

MICROBIAL PATHOGENESIS
Volume 41, Issue 2-3, Pages 119-124

Publisher

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.micpath.2006.05.002

Keywords

M. tuberculosis; pathogenesis; endothelium

Ask authors/readers for more resources

Establishment of pulmonary Mycobacterium tuberculosis infection requires evasion of host innate defenses. In the lung alveoli, epithelial cells naturally resist uptake by the inhaled bacilli while macrophages patrol the epithelial surface and phagocytose foreign microbes. Alveolar microvascular endothelial cells, however, have not been examined as a potential point of direct interaction with the bacilli. It has been shown with other bacterial and viral lung pathogens that the lung endothelial cells are not only a point of interaction, but a source for intracellular replication and chronic infection by the pathogen. To investigate if endothelial cells are susceptible to M. tuberculosis infection, we examined attachment, internalization, and intracellular replication of M. tuberculosis bacilli in an immortalized human lung microvascular endothelial cell line (HULEC). By 6 h post-infection, 12% of infecting bacilli were associated with the HULEC monolayer cells. This was twice the association observed following a similar infection with cells from a human foreskin microvascular endothelial cell line (HMEC-1). As measured by survival after the addition of a high extracellular concentration of the aminoglycoside amikacin, approximately one-third of the associated bacilli were internalized and unavailable to the drug in both cell lines. Using electron microscopy, large numbers of bacilli were visible in the vacuoles of HULEC cells after 48 h post-infection; the presence of bacterial septa between adjacent mycobacteria suggests intracellular replication. These in vitro findings support the hypothesis that lung endothelial cells have the potential to participate in in vivo lung infections. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available