4.2 Article

Charge patterns as templates for the assembly of layered miomolecular structures

Journal

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
Volume 6, Issue 8, Pages 2445-2450

Publisher

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jnn.2006.516

Keywords

charge writing; nanofabrication; guided self-assembly; AFM lithography; avidin-biotin reaction

Ask authors/readers for more resources

Electric fields are used to guide the assembly of biomolecules in predefined geometric patterns on solid substrates. Local surface charges serve as templates to selectively position proteins on thin-film polymeric electret layers, thereby creating a basis for site-directed layered assembly of biomolecular structures. Charge patterns are created using the lithographic capabilities of an atomic force microscope, namely by applying voltage pulses between a conductive tip and the sample. Samples consist of a poly(methyl methacrylate) layer on a p-doped silicon support. Subsequently, the sample is developed in a water-in-oil emulsion, consisting of a dispersed aqueous phase containing biotin-modified immunoglobulinG molecules, and a continuous nonpolar, insulating oil phase. The electrostatic fields cause a net force of (di)electrophoretic nature on the droplet, thereby guiding the proteins to the predefined locations. Due to the functionalization of the immunoglobulinG molecules with biotin-groups, these patterns can now be used to initiate the localized layer-by-layer assembly of biomolecules based on the avidin-biotin mechanism. By binding 40 nm sized biotin-labelled beads to the predefined locations via a streptavidin linker, we verify the functionality of the previously deposited immunoglobulinG-biotin. All assembly steps following the initial deposition of the immunoglobulinG from emulsion can conveniently be conducted in aqueous solutions. Results show that pattern definition is maintained after immersion into aqueous solution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available