4.6 Article

PZT-based active damage detection techniques for steel bridge components

Journal

SMART MATERIALS AND STRUCTURES
Volume 15, Issue 4, Pages 957-966

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/15/4/009

Keywords

-

Ask authors/readers for more resources

This paper presents the results of experimental studies on piezoelectric lead-zirconate-titanate (PZT)-based active damage detection techniques for nondestructive evaluations (NDE) of steel bridge components. PZT patches offer special features suitable for real-time in situ health monitoring systems for large and complex steel structures, because they are small, light, cheap, and useful as built-in sensor systems. Both impedance and Lamb wave methods are considered for damage detection of lab-size steel bridge members. Several damage-sensitive features are extracted: root mean square deviations (RMSD) in the impedances and wavelet coefficients (WC) of Lamb waves, and the times of flight (TOF) of Lamb waves. Advanced signal processing and pattern recognition techniques such as continuous wavelet transform (CWT) and support vector machine (SVM) are used in the current system. Firstly, PZT patches were used in conjunction with the impedance and Lamb waves to detect the presence and growth of artificial cracks on a 1/8 scale model for a vertical truss member of Seongsu Bridge, Seoul, Korea, which collapsed in 1994. The RMSD in the impedances and WC of Lamb waves were found to be good damage indicators. Secondly, two PZT patches were used to detect damage on a bolt-jointed steel plate, which was simulated by removing bolts. The correlation of the Lamb wave transmission data with the damage classified by in and out of the wave path was investigated by using the TOF and WC obtained from the Lamb wave signals. The SVM was implemented to enhance the damage identification capability of the current system. The results from the experiments showed the validity of the proposed methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available