4.5 Article Proceedings Paper

Multipotent adult progenitor cell lines originating from the peripheral blood of green fluorescent protein transgenic swine

Journal

STEM CELLS AND DEVELOPMENT
Volume 15, Issue 4, Pages 507-522

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/scd.2006.15.507

Keywords

-

Funding

  1. NCRR NIH HHS [R01RR13438] Funding Source: Medline
  2. NHLBI NIH HHS [P01HL52490] Funding Source: Medline

Ask authors/readers for more resources

Multipotent self-renewing stem cell lines have been established using peripheral blood mononuclear cells from adult green fluorescent protein transgenic swine. These cells proliferate as nonadherent spheroids in primordial-specific culture media and readily differentiate into angiogenic, osteogenic, adipogenic, and neurogenic phenotypes when cultured under the appropriate conditions. These cells are designated peripheral blood-derived multipotent adult progenitor cells (PBD-MAPCs). When differentiated in endothelial-specific media, these cells exhibit a cobblestone morphology and express von Willebrand factor (vWF), take up 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarboxyanine-labeled acetylated low-density lipoprotein DiI-Ac-LDL, and form tubes with lumens when grown on pads of Matrigel T. Under different culture conditions, the cells appear whorl-like in appearance and express alpha-actin, indicative of smooth muscle phenotype. In the presence of dexamethasone and ascorbic acid, PBD-MAPCs differentiate into cells that produce Alizarin Red-staining extracellular mineral, consistent with an osteogenic potential. Under different conditions the cells produce Oil Red O-staining lipid vacuoles, suggestive of an adipocyte phenotype. We have also developed conditions that induce PBD-MAPCs to differentiate into neural cells, confirmed by the expression of specific neuron- and glial-specific markers. Upon transplantation into rat brain, the neurogenic cells survive and migrate throughout the striatum and corpus callosum. The cells remain brightly fluorescent throughout their time in culture, during in vitro differentiation, and after in vivo transplantation. PBD-MAPCs have been maintained in primordial cell media for more than 100 doublings, yet can be induced to differentiate rapidly and efficiently into distinct cell types. PBD-MAPCs are ideal tools to study the mechanisms of differentiation and may be superior to embryonic stem cells as cellular therapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available