4.4 Article

Transport of α-helical peptides through α-hemolysin and aerolysin pores

Journal

BIOCHEMISTRY
Volume 45, Issue 30, Pages 9172-9179

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi0604835

Keywords

-

Ask authors/readers for more resources

A series of negatively charged R-helical peptides of the general formula fluorenylmethoxycarbonyl ( Fmoc)-D(x)A(y)K(z) were synthesized, where x and z were 1, 2, or 3 and y was 10, 14, 18, or 22. The translocation of the peptides through single pores, which were self-assembled into lipid membranes, was analyzed by measuring the current blockade i(block) and the duration t(block). The pores were either alpha-hemolysin, which has a wide vestibule leading into the pore, or aerolysin, which has no vestibule but has a longer pore of a similar diameter. Many thousands of events were measured for each peptide with each pore, and they could be assigned to two types: bumping events ( type I) have a small iblock and long tblock, and translocation events ( type II) have a larger i(block) and shorter t(block). For type-II events, both i(block) and t(block) increase with the length of the peptides on both pores tested. The dipole moment and the net charge of each peptide has a major effect on the transport characteristics. The ratio of type-II/type-I events increases as the dipole moment increases, and uncharged peptides gave mostly type-I events. The structural differences between the two nanopores were reflected in the characteristic values of i(block), and in particular, the vestibule of alpha-hemolysin helps to orient the peptides for translocation. Overall, the results demonstrate that the nanopore technology can provide useful structural information but peptide sequencing will require further improvements in the design of the pores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available