4.5 Article

Phosphatidylinositol-3 phosphatase myotubularin-related protein 6 negatively regulates CD4 T cells

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 26, Issue 15, Pages 5595-5602

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00352-06

Keywords

-

Funding

  1. NIDDK NIH HHS [DK49207] Funding Source: Medline

Ask authors/readers for more resources

Intracellular Ca2+ levels rapidly rise following cross-linking of the T-cell receptor (TCR) and function as a critical intracellular second messenger in T-cell activation. It has been relatively under appreciated that K+ channels play an important role in Ca2+ influx into T lymphocytes by helping to maintain a negative membrane potential which provides an electrochemical gradient to drive Ca2+ influx. Here we show that the Ca2+-activated K+ channel, KCa3.1, which is critical for Ca2+ influx in reactivated naive T cells and central memory T cells, requires phosphatidylinositol-3 phosphatase [PI(3)P] for activation and is inhibited by the PI(3)P phosphatase myotubularin-related protein 6 (MTMR6). Moreover, by inhibiting KCa3.1, MTMR6 functions as a negative regulator of Ca2+ influx and proliferation of reactivated human CD4 T cells. These findings point to a new and unexpected role for PI(3)P and the PI(3)P phosphatase MTMR6 in the regulation of Ca2+ influx in activated CD4 T cells and suggest that MTMR6 plays a critical role in setting a minimum threshold for a stimulus to activate a T cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available