4.5 Article Proceedings Paper

LES-DPS of the effect of wall roughness on dispersed-phase transport in particle-laden turbulent channel flow

Journal

INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW
Volume 27, Issue 4, Pages 619-626

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijheatfluidflow.2006.02.009

Keywords

particle-laden turbulent flow; wall roughness

Ask authors/readers for more resources

The influence of wall roughness on dispersed-phase properties of particle-laden turbulent channel flow is investigated using large eddy simulation (LES) for the fluid flow and discrete particle simulation (DPS) for the particulate phase. Gas-solid flows are considered for which the particle equation of motion includes the contribution from the drag force. The influence of wall roughness is treated stochastically in which the impact angle is comprised of the particle trajectory angle and a stochastic component due to wall roughness. Elastic particle-wall collisions are considered with surface roughness characterized in terms of the standard deviation of the distribution of wall roughness angles. Computations are performed for three Stokes numbers and standard deviations in the wall roughness angle of 0 (smooth wall), 2.5 degrees and 5 degrees. LES-DPS results show that for a given wall roughness angle and particle Stokes number the most pronounced effect is on the wall-normal component of the particle velocity, which can be substantially increased by roughness. While the streamwise particle velocity variance also increases, the spanwise particle fluctuating velocity exhibits relatively little sensitivity to surface roughness. In addition, LES/DPS results show that wall roughness increases turbulent transport of the wall-normal particle velocity variance, in turn providing a mechanism for elevation of the particle velocity fluctuations across the entire flow. (C) 2006 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available