4.3 Review

VGLUTs: 'Exciting' times for glutamatergic research?

Journal

NEUROSCIENCE RESEARCH
Volume 55, Issue 4, Pages 343-351

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neures.2006.04.016

Keywords

vesicular glutamate transporter (VGLUT); glutamate; neurotransmitter; quantal size; synaptic vesicle

Categories

Ask authors/readers for more resources

Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system (CNS). Glutamate is first synthesized in the cytoplasm of presynaptic terminals before being loaded into synaptic vesicles, which fuse with the plasma membrane, releasing their contents, in response to neuronal activity. The important process of synaptic vesicle loading is mediated by a transport protein, collectively known as vesicular glutamate transporter (VGLUT). Controlling the activity of these transporters could potentially modulate the efficacy of glutamatergic neurotransmission. In recent years, three isoforms of mammalian VGLUTs have been cloned and molecularly characterized in detail. Probing these three VGLUTs has been proven to be the most reliable way of visualizing sites of glutamate release in the mammalian CNS. Immunohistochemical studies on VGLUTs suggest that glutamatergic neurons are categorized into subgroups depending on which VGLUT isoform they contain. Recent studies on VGLUT1-deficient mice have led various models to be postulated concerning the possible roles of VGLUTs in synaptic physiology, such as presynaptic regulation of quantal size and activity-dependent short-term plasticity. (c) 2006 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available