4.3 Article

Properties and performance of BaxSr1-xCo0.8Fe0.2O3-δ materials for oxygen transport membranes

Journal

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
Volume 10, Issue 8, Pages 581-588

Publisher

SPRINGER
DOI: 10.1007/s10008-006-0130-2

Keywords

BaxSr1-xCo0.8Fe0.2O3-delta; oxygen transport membranes; phase relation; mechanical strength; chemical stability

Ask authors/readers for more resources

The present paper discusses the oxygen transport properties, oxygen stoichiometry, phase stability, and chemical and mechanical stability of the perovskites Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) and SrCo0.8Fe0.2O3-delta (SCF) for air separation applications. The low oxygen conductive brownmillerite phase in SCF is characterized using in-situ neutron diffraction, thermographic analysis and temperature programmed desorption but this phase is not present for BSCF under the conditions studied. Although both materials show oxygen fluxes well above 10 ml/cm(2).min at T = 1,273 K and pO(2) = 1 bar for self-supporting, 200 mu m-thick membranes, BSCF is preferred as a membrane material due to its phase stability. However, BSCF's long-term stable performance remains to be confirmed. The deviation from ideal oxygen stoichiometry for both materials is high: delta > 0.6. The thermal expansion coefficients of BSCF and SCF are 24 x 10(-6) and 30 x 10(-6) K-1, respectively, as determined from neutron diffraction data. The phenomenon of kinetic demixing has been observed at pO(2) < 10(-5) bar, resulting in roughening of the surface and enrichment with alkaline earth metals. Stress-strain curves were determined and indicated creep behavior that induces undesired ductility at T = 1,073 K for SCF. Remedies for mechanical and chemical instabilities are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available