4.7 Article

Synthetic histidine-rich peptides inhibit Candida species and other fungi in vitro:: Role of endocytosis and treatment implications

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 50, Issue 8, Pages 2797-2805

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00411-06

Keywords

-

Funding

  1. NCI NIH HHS [R29 CA070394, R01 CA096984, CA96984, CA70394] Funding Source: Medline

Ask authors/readers for more resources

A family of histidine-rich peptides, histatins, is secreted by the parotid gland in mammals and exhibits marked inhibitory activity against a number of Candida species. We were particularly interested in the mechanism by which histidine-rich peptides inhibit fungal growth, because our laboratory has synthesized a variety of such peptides for drug and nucleic acid delivery. In contrast to naturally occurring peptides that are linear, peptides made on synthesizers can be varied with respect to their degrees of branching. Using this technology, we explored whether histidine-lysine (HK) polymers of different complexities and degrees of branching affect the growth of several species of Candida. Polymers with higher degrees of branching were progressively more effective against Candida albicans, with the four-branched polymer, H2K4b, most effective. Furthermore, R2K4b accumulated efficiently in C albicans, which may indicate its ability to transport other antifungal agents intracellularly. Although H2K4b had greater antifungal activity than histatin 5, their mechanisms were similar. Toxicity in C albicans induced by histatin 5 or branched HK peptides was markedly reduced by 4,4'-diisothiocyanato-stilbene-2,2'-disulfonate, an inhibitor of anion channels. We also determined that bafilomycin A1, an inhibitor of endosomal acidification, significantly decreased the antifungal activity of H2K4b. This suggests that the pH-buffering and subsequent endosomal-disrupting properties of histidine-rich peptides have a role in their antifungal activity. Moreover, the ability of the histidine component of these peptides to disrupt endosomes, which allows their escape from the lysosomal pathway, may explain why these peptides are both effective antifungal agents and nucleic acid delivery carriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available