4.6 Article

Flocculation mechanism induced by cationic polymers investigated by light scattering

Journal

LANGMUIR
Volume 22, Issue 16, Pages 6775-6786

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la060281+

Keywords

-

Ask authors/readers for more resources

Three cationic polymers with molecular weights and charge densities of 3.0 x 10(5) g/mol and 10%, 1.1 x 10(5) g/mol and 40%, and 1.2 x 10(5) g/mol and 100% were chosen as flocculants to aggregate silica particles (90 nm), under various conditions, including change in polymer dosage, particle concentration, background electrolyte concentration, and shear rate. The size and structure of flocs produced were determined using the static light scattering technique. On the basis of measurements of polymer adsorption and its effect on the zeta potential and floc properties, it has been found that the polymer charge density plays an important role in determining the flocculation mechanism. Polymers with a 10% charge density facilitate bridging, 40% charged polymers bring about either a combination of charge neutralization and bridging or bridging, depending on the polymer dosage, and polymers with the charge density of 100% induce electrostatic patch flocculation mechanism at the optimum polymer dosage and below but bring about bridging mechanism at the polymer dosage approaching the adsorption plateau value. Bridging aggregation can readily be affected by the particle concentration, and an increase in particle concentration results in the formation of larger but looser aggregates, whereas electrostatic patch aggregation is independent of particle concentration. The addition of a background electrolyte aids in bridging aggregation while it is detrimental to electrostatic patch aggregation. It has also been found that the effect of shear rate on the mass fractal dimension depends on polymer charge density.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available