4.6 Article

The constitutive behavior of laser welds in 304L stainless steel determined by digital image correlation

Ask authors/readers for more resources

A digital image correlation (DIC) method has been used to characterize the constitutive tensile stress-strain response in 304L austenitic stainless steel weldments produced by both continuous-wave (CW) and pulsed-wave (PW) laser welding. The method provides quantitative two-dimensional (2-D) strain maps of the deformation field across the transverse weld samples throughout the tensile test. Local stress-strain response was extracted from regions within the fusion zone and compared to base metal response. The weldments were found to have a higher yield strength than the base metal. The metallurgical origin for the fusion zone strengthening was largely attributed to Hall-Petch and ferrite content effects. While failures localized in the fusion zone with little appreciable necking, the material within the fusion zone retained considerable local ductility: more than 45 pet strain at failure. Significant weld root porosity found in the PW condition and absent in the CW condition appeared to have no deleterious effect on the mechanical performance under the present test conditions in this very ductile, flaw-tolerant alloy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available