4.4 Article

Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data

Journal

CLASSICAL AND QUANTUM GRAVITY
Volume 23, Issue 15, Pages 4895-4906

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0264-9381/23/15/009

Keywords

-

Ask authors/readers for more resources

In this paper we present a description of a Bayesian analysis framework for use with interferometric gravitational radiation data in search of binary neutron star inspiral signals. Five parameters are investigated, and the information extracted from the data is illustrated and quantified. The posterior integration is carried out using Markov chain Monte Carlo ( MCMC) methods. Implementation details include the use of importance resampling for improved convergence and informative priors reflecting the conditions expected for realistic measurements. An example is presented from an application using realistic, albeit fictitious, data. We expect that these parameter estimation techniques will prove useful at the end of a binary inspiral detection pipeline for interferometric detectors like LIGO or Virgo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available