4.8 Article

Nuclear targeting of At antagonizes aspects of cardiomyocyte hypertrophy

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0510138103

Keywords

cardiac; signal transduction; nucleus; kinase; remodeling

Funding

  1. NHLBI NIH HHS [R01 HL067245, R01 HL066035, HL66035, HL67245, HL58224] Funding Source: Medline
  2. NIA NIH HHS [P01AG023071, P01 AG023071] Funding Source: Medline

Ask authors/readers for more resources

The serine/threonine kinase Akt regulates cellular survival, proliferation, gene transcription, protein translation, metabolism, and differentiation. Although Akt substrates are found throughout the cell, activated Akt normally accumulates in the nucleus, suggesting that biologically relevant targets are located there. Consequences of nuclear Akt signaling in cardiomyocytes were explored by using nuclear-targeted Akt (Akt-nuc). Accumulation of Akt-nuc did not provoke hypertrophy, unlike constitutively activated Akt. Instead, Akt-nuc inhibited hypertrophy concurrent with increased atrial natriuretic peptide (ANP) expression that depended upon phosphatidylinositol-3 kinase activity. Akt-nuc anti hypertrophic effects were blocked by inhibition of either guanylyl cyclase A receptor or cyclic guanosine monophosphate-dependent protein kinase in cultured cardiomyocytes. Corroborating evidence showed blunted acute hypertrophic remodeling in Akt-nuc transgenic mice after transverse aortic constriction coincident with higher ANP expression and smaller myocyte volume. In addition, Akt-nuc expression improved systolic function and survival in the chronic phase of transverse aortic constriction-induced hypertrophy. Thus, Akt-nuc antagonizes certain aspects of hypertrophy through autocrine/ paracrine stimulation of a phosphatidylinositol-3 kinase-dependent signaling cascade that promotes ANP expression, resulting in a unique combination of prosurvival coupled with antihypertrophic signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available