4.8 Article

Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0601708103

Keywords

endonuclease; severe acute respiratory syndrome; nidovirus; replication

Ask authors/readers for more resources

The approximate to 30-kb coronavirus (+)RNA genome is replicated and transcribed by a membrane-bound replicase complex made up of 16 viral nonstructural proteins (nsp) with multiple enzymatic activities. The complex includes an RNA endonuclease, NendoU, that is conserved among nidoviruses but no other RNA virus, making it a genetic marker of this virus order. NendoU (nsp15) is a Mn2+-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond. Neither biochemical nor sequence homology criteria allow a classification of nsp15 into existing endonuclease families. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus nsp15 at 2.6-angstrom resolution. Nsp15 exhibits a unique fold and assembles into a toric hexamer with six potentially active, peripheric catalytic sites. The structure and the spatial arrangement of the catalytic residues into an RNase A-like active site define a separate endonuclease family, endoU, and represent another spectacular example of convergent evolution toward an enzymatic function that is critically involved in the coronavirus replication cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available