4.5 Article

Modeling solute transport in one-dimensional homogeneous and heterogeneous soil columns with continuous time random walk

Journal

JOURNAL OF CONTAMINANT HYDROLOGY
Volume 86, Issue 3-4, Pages 163-175

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconhyd.2006.03.001

Keywords

solute transport; continuous time random walk; non-Fickian; homogeneous soil; heterogeneous soil

Ask authors/readers for more resources

In this paper, we used the continuous time random walk (CTRW) framework to characterize the transport process in 1250-cm long one-dimensional homogenous and heterogeneous soil columns at the experiments conducted by Huang et al. [Huang, K., Toride, N., van Genuchten, M.Th., 1995. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Trans. Porous Media. 18, 283-302]. The transport process was also simulated by using the advection-dispersion equation (ADE) and the spatial fractional advection-dispersion equation (FADE) for comparison. In the homogeneous soil column, the non-Fickian behavior is found at the distances less than 1000cm with beta values larger than 1.60, but less than 2, and Fickian form transport is obtained at distances larger than 1000cm with beta values larger than 2. In the heterogeneous soil column, we found the most anomalous behavior at distances from 200cm to 700cm with beta values ranging from 0.894 to 0.958, and non-Fickian transport process is observed at distances larger than 800 cm with beta values in the range between 1 and 1.3. More significant non-Fickian behavior is found for transport in the heterogeneous soil column than that in the homogeneous soil column. The CTRW fits to the breakthrough curves (BTCs) have lower values of root mean square error (RMSE) and higher values of determination coefficient (r), with respect to the fits of ADE and FADE. The CTRW model also is better captures the full evolution of BTCs, and especially their tails. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available