4.5 Article

Open-system nonequilibrium steady state: Statistical thermodynamics, fluctuations, and chemical oscillations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 31, Pages 15063-15074

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp061858z

Keywords

-

Ask authors/readers for more resources

Gibbsian equilibrium statistical thermodynamics is the theoretical foundation for isothermal, closed chemical, and biochemical reaction systems. This theory, however, is not applicable to most biochemical reactions in living cells, which exhibit a range of interesting phenomena such as free energy transduction, temporal and spatial complexity, and kinetic proofreading. In this article, a nonequilibrium statistical thermodynamic theory based on stochastic kinetics is introduced, mainly through a series of examples: single-molecule enzyme kinetics, nonlinear chemical oscillation, molecular motor, biochemical switch, and specificity amplification. The case studies illustrate an emerging theory for the isothermal nonequilibrium steady state of open systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available