4.5 Article

Mechanistic study of the electrochemical oxygen reduction reaction on Pt(111) using density functional theory

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 110, Issue 31, Pages 15338-15344

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp061813y

Keywords

-

Ask authors/readers for more resources

Density functional theory (DFT) was used to study the electrolyte solution effects on the oxygen reduction reaction (ORR) on Pt(111). To model the acid electrolyte, an H5O2+ cluster was used. The vibrational proton oscillation modes for adsorbed H5O2+ computed at 1711 and 1010 cm(-1), in addition to OH stretching and H2O scissoring modes, agree with experimental vibrational spectra for proton formation on Pt surfaces in ultrahigh vacuum. Using the H5O2+ model, protonation of adsorbed species was found to be facile and consistent with the activation barrier of proton transfer in solution. After protonation, OOH dissociates with an activation barrier of 0.22 eV, similar to the barrier for O-2 dissociation. Comparison of the two pathways suggests that O2 protonation precedes dissociation in the oxygen reduction reaction. Additionally, an OH diffusion step following O protonation inhibits the reaction, which may lead to accumulation of oxygen on the electrode surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available