4.5 Article

Stroboscopic white-light interference microscopy

Journal

APPLIED OPTICS
Volume 45, Issue 23, Pages 5840-5844

Publisher

OPTICAL SOC AMER
DOI: 10.1364/AO.45.005840

Keywords

-

Categories

Ask authors/readers for more resources

The principle of stroboscopic motion freezing of oscillating objects extends directly to interference microscopes that use coherence as part of the measurement principle. Analysis shows, however, that the fringe contrast loss for out-of-plane motion in stroboscopic interferometry is a wavelength-dependent phenomenon, which can alter the apparent nominal center wavelength of the white-light source. As in monochromatic systems, the key adjustable parameter is the duty cycle, equal to the product of the vibrational frequency and the pulse width. This theoretical study provides detailed graphs of expected errors as a function of the duty cycle, including fringe contrast loss, apparent wavelength shift, and measurement error. (C)2006 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available