4.5 Article

Chronic systemic D-galactose exposure induces memory loss, neuro degeneration, and oxidative damage in mice:: Protective effects of R-α-lipoic acid

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 84, Issue 3, Pages 647-654

Publisher

WILEY-LISS
DOI: 10.1002/jnr.20899

Keywords

aging; cognitive dysfunction; neurodegeneration; neurogenesis; oxidative damage; R-a-lipoic acid

Categories

Ask authors/readers for more resources

Chronic systemic exposure of mice, rats, and Drosophila to D-galactose causes the acceleration of senescence and has been used as an aging model. The underlying mechanism is yet unclear. To investigate the mechanisms of neurodegeneration in this model, we studied cognitive function, hippocampal neuronal apoptosis and neurogenesis, and peripheral oxidative stress biomarkers, and also the protective effects of the antioxidant R-alpha-lipoic acid. Chronic systemic exposure Of D-galactose (100 mg/kg, s.c., 7 weeks) to mice induced a spatial memory deficit, an increase in cell karyopyknosis, apoptosis and caspase-3 protein levels in hippocampal neurons, a decrease in the number of new neurons in the subgranular zone in the dentate gyrus, a reduction of migration of neural progenitor cells, and an increase in death of newly formed neurons in granular cell layer. The D-galactose exposure also induced an increase in peripheral oxidative stress, including an increase in malondialdehyde, a decrease in total anti-oxidative capabilities (T-AOC), total superoxide dismutase (F-SOD), and glutathione peroxidase (GSH-Px) activities. A concomitant treatment with lipoic acid ameliorated cognitive dysfunction and neurodegeneration in the hippocampus, and also reduced peripheral oxidative damage by decreasing malondialdehyde and increasing T-AOC and T-SOD, without an effect on GSH-Px. These findings suggest that chronic D-galactose exposure induces neurodegeneration by enhancing caspase-mediated apoptosis and inhibiting neurogenesis and neuron migration, as well as increasing oxidative damage. In addition, D-galactose-induced toxicity in mice is a useful model for studying the mechanisms of neurodegeneration and neuroprotective drugs and agents. (c) 2006 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available