4.6 Article

Characteristics of PVdF-HFP/TiO2 composite membrane electrolytes prepared by phase inversion and conventional casting methods

Journal

ELECTROCHIMICA ACTA
Volume 51, Issue 26, Pages 5636-5644

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2006.02.038

Keywords

polymer electrolytes; poly(vinylidene fluoride); titanium oxide nanoparticles; phase inversion technique; cast films

Ask authors/readers for more resources

Porous poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)-based polymer membranes filled with various contents of titania (TiO2) nanocrystalline particles are prepared by phase inversion technique and, along with conventional casting method for comparison. N-methyl-2-pyrrolidone (NMP) as a solvent is used to dissolve the polymer and to make the slurry with TiO2. Cast film is obtained by spreading the slurry and evaporating NMP in a dry oven, while phase inversion membrane by promptly immersing the spread slurry into flowing water as a non-solvent. Physical and electrochemical characterizations, such as morphology, thermal and crystalline behavior, and other transport properties of lithium ionic species, are carried out for the polymer films/membranes and the polymer electrolytes with absorbing an electrolyte solution. Phase inversion polymer electrolytes are proved to show superior behaviors in electrochemical properties, such as ionic conductivity, electrochemical and interfacial stability, than cast film electrolytes. This is greatly owed to highly porous structure of phase inversion membranes. Even including the feature of interfacial resistance with lithium electrode, phase inversion polymer electrolytes of PVdF-HFP/(5-20 wt.% TiO2) can be optimized as the adequate ones in applying to the electrolyte medium of lithium rechargeable batteries. (c) 2006 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available