4.5 Article

Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 84, Issue 3, Pages 587-595

Publisher

WILEY
DOI: 10.1002/jnr.20962

Keywords

axonal loss; bone marrow stromal cells; experimental autoimmune encephalomyelitis; nerve growth factor

Categories

Funding

  1. NINDS NIH HHS [P01 NS042345, R01 NS045041, P01 NS42345, R01 NS45041] Funding Source: Medline

Ask authors/readers for more resources

We investigated the ability of human bone marrow stromal cell (hBMSC) treatment to reduce axonal loss in experimental autoimmune encephalomyelitis (EAE) mice. EAE was induced in SJL/J mice by injection with proteolipid protein (PLP). Mice were injected intravenously with hBMSCs or PBS on the day of clinical onset, and neurological function was measured daily (score 0-5) until 45 weeks after onset. Mice were sacrificed at week 1, 10, 20, 34, and 45 after clinical onset. Bielshowsky silver was used to identify axons. Immunohistochemistry was performed to measure the expression of nerve growth factor (NGF) and MA131281, a marker of hBMSCs. hBMSC treatment significantly reduced the mortality, the disease severity, and the number of relapses in EAE mice compared with PBS treatment. Axonal density and NGF(+) cells in the EAE brain were significantly increased in the hBMSC group compared with the PBS group at 1, 10, 20, 34, and 45 weeks. Disease severity was significantly correlated with decreased axonal density and decreased NGF, and increased axonal density was significantly correlated with reduced loss of NGF expression after hBMSC treatment. Most of the NGF+ cells are brain parenchymal cells. Under 5% of MA131281(+) cells colocalized with NG2(+), a marker of oligodendrocyte progenitor cells. Nearly 10% of MA131281(+) cells colocalized with GFAP, a marker of astrocytes, and MAP-2, a marker of neurons. Our findings indicate that hBMSCs improve functional recovery and may provide a potential therapy aimed at axonal protection in EAE mice, in which NGF may play a vital role. (c) 2006 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available