4.6 Article

Characterization of mechanisms involved in secretion of active heparanase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 281, Issue 33, Pages 23804-23811

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602762200

Keywords

-

Funding

  1. NCI NIH HHS [R01-CA106456] Funding Source: Medline

Ask authors/readers for more resources

Heparanase is an endo-beta-D-glucuronidase involved in extracellular matrix remodeling and degradation and implicated in tumor metastasis, angiogenesis, inflammation, and autoimmunity. The enzyme is synthesized as a latent 65-kDa protein and is processed in the lysosomal compartment to an active 58-kDa heterodimer, where it is stored in a stable form. In contrast, its heparan sulfate substrate is localized extracellularly, suggesting the existence of mechanisms that trigger heparanase secretion. Here we show that secretion of the active enzyme is mediated by the protein kinase A and C pathways. Moreover, secretion of active heparanase was observed upon cell stimulation with physiological concentrations of adenosine, ADP, and ATP, as well as by the noncleavable ATP analogue adenosine 5'-O-( thiotriphosphate). Indeed, heparanase secretion was noted upon cell stimulation with a specific P2Y1 receptor agonist and was inhibited by P2Y receptor antagonists. The kinetics of heparanase secretion resembled the secretion of cathepsin D, a lysosomal enzyme, indicating that the secreted heparanase is of lysosomal origin. We suggest that secretion of active heparanase is initiated by extracellular cues activating the protein kinase A and C signaling pathways. The secreted enzyme(s) then facilitate cell invasion associated with cancer metastasis, angiogenesis, and inflammation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available