4.7 Article

An efficient implementation of the cluster-in-molecule approach for local electron correlation calculations

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 125, Issue 7, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2244566

Keywords

-

Ask authors/readers for more resources

An efficient implementation of the cluster-in-molecule (CIM) approach is presented for performing local electron correlation calculations in a basis of orthogonal occupied and virtual localized molecular orbitals (LMOs). The main idea of this approach is that significant excitation amplitudes can be approximately obtained by solving the coupled cluster (or Moller-Plesset perturbation theory) equations of a series of clusters, each of which contains a subset of occupied and virtual LMOs. In the present implementation, we have proposed a simple approach for constructing virtual LMOs of clusters, and new ways of constructing clusters and extracting the correlation contributions from calculations on clusters, which are more efficient than those suggested in the original work. More importantly, linear scaling of computational time of the CIM approach is achieved by evaluating the transformed two-electron integrals over LMOs using simple truncation techniques in limited operations (independent of the molecular size). With typical thresholds, for a variety of molecules our test calculations demonstrate that more than 99% of the conventional MP2 or coupled cluster with doubles correlation energies can be recovered in the present CIM approach. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available