4.8 Article

Two-dimensional electronic spectroscopy of the B800-B820 light-harvesting complex

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0602961103

Keywords

photosynthetic complexes; excitons; multichromophoric systems; ultrafast spectroscopy

Funding

  1. Biotechnology and Biological Sciences Research Council [BB/D000610/1] Funding Source: Medline
  2. Biotechnology and Biological Sciences Research Council [BB/D000610/1] Funding Source: researchfish

Ask authors/readers for more resources

Emerging nonlinear optical spectroscopies enable deeper insight into the intricate world of interactions and dynamics of complex molecular systems. 2D electronic spectroscopy appears to be especially well suited for studying multichromophoric complexes such as light-harvesting complexes of photosynthetic organisms as it allows direct observation of couplings between the pigments and charts dynamics of energy flow on a 2D frequency map. Here, we demonstrate that a single 2D experiment combined with self-consistent theoretical modeling can determine spectroscopic parameters dictating excitation energy dynamics in the bacterial B800-B820 light-harvesting complex, which contains 27 bacteriochlorophyll molecules. Ultrafast sub-50-fs dynamics dominated by coherent intraband processes and population transfer dynamics on a picosecond time scale were measured and modeled with one consistent set of parameters. Theoretical 2D spectra were calculated by using a Frenkel exciton model and modified Forster/Redfield theory for the calculation of dynamics. They match the main features of experimental spectra at all population times well, implying that the energy level structure and transition dipole strengths are modeled correctly in addition to the energy transfer dynamics of the system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available