4.8 Article

Local peptide movement in the photoreaction intermediate of rhodopsin

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0601765103

Keywords

G protein-coupled receptor; membrane protein; visual pigment

Ask authors/readers for more resources

Photoactivation of the visual rhodopsin, a prototypical G protein-coupled receptor (GPCR), involves efficient conversion of the intrinsic inverse-agonist 11-cis-retinal to the all-trans agonist. This event leads to the rearrangement of the heptahelical transmembrane bundle, which is thought to be shared by hundreds of GPCRs. To examine this activation mechanism, we determined the x-ray crystallographic model of the photoreaction intermediate of rhoclopsin, lumirhodopsin, which represents the conformational state having the nearly complete all-trans agonist form of the retinal. A difference electron density map clearly indicated that the distorted all-trans-retinal in the precedent intermediate bathorhoclopsin relaxes by dislocation of the U-ionone ring in lumirhoclopsin, along with significant peptide displacement in the middle of helix III, including approximately two helical turns. This local movement results in the breaking of the electrostatic interhelical restraints mediated by many of the conserved residues among rhodopsin-like GPCRs, with consequent acquisition of full activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available