4.8 Article

C-H bond activation through steric crowding of normally inert ligands in the sterically crowded gadolinium and yttrium (C5Me5)3M complexes

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0602672103

Keywords

sterically induced reduction; lanthanide; pentamethylcyclopentadienyl; arene activation; long-bond organometallics

Ask authors/readers for more resources

Synthesis of the sterically crowded Tris(pentamethylcyclopentaclienyl) lanthanide complexes, (C5Me5)(3)Ln, has demonstrated that organometallic complexes with unconventionally long metal ligand bond lengths can be isolated that provide options to develop new types of ligand reactivity based on steric crowding. Previously, the (C5MeS)(3)M complexes were known only with the larger lanthanides, La-Sm. The synthesis of even more crowded complexes of the smaller metals Gd and Y is reported here. These complexes allow an evaluation of the size/reactivity correlations previously limited to the larger metals and demonstrate a previously undescribed type of C5Me5-based reaction, namely C-H bond activation. (C5Me5)(3)Gd, was prepared from GdCl3 through (C5Me5)(2)GdCl2K(THF)(2), (C5Me5)(2)Gd(C(3)Hs), and [(C5Me5)(2)Gd][BPh4] and structurally characterized by x-ray crystallography. Although Gd3+ is redox-inactive, (CsMe5)(3)Gd functions as a reducing agent in reactions with 1,3,5,7-cyclooctatetraene (COT) and triphenylphosphine selenide to make (C5Me5)Gd(C8H8), [(C5MeS)(2)Gd](2)Se-2, and [(C5Me5)(2)Gd](2)Se depending on the stoichiometry used. When the analogous synthetic method was attempted with yttrium in arene solvents, the previously characterized (C5Me5)(2)YR complexes (R=C6H5, CH(2)C(6)Hs) were isolated instead, i.e., C-H bond activation of solvent occurred. To avoid this problem, (C5Me5)(3)y was synthesized in high yield from [(C5Me5)(2)YH](2) and tetramethylfulvene in aliphatic solvents. Isolated (C5Me5)(3)y was found to metalate benzene and toluene with concomitant formation of C5Me5H, a reaction contrary to the normal pK(a) values of these hydrocarbons. In this case, the normally inert (C5Me5)(1-) ligand engages in C-H bond activation due to the extreme steric crowding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available