4.8 Article

Anisotropic deformation response of single protein molecules

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0602995103

Keywords

cysteine engineering; GFP; protein mechanics; protein stability; single-molecule force spectroscopy

Ask authors/readers for more resources

Single-molecule methods have given experimental access to the mechanical properties of single protein molecules. So far, access has been limited to mostly one spatial direction of force application. Here, we report single-molecule experiments that explore the mechanical properties of a folded protein structure in precisely controlled directions by applying force to selected amino acid pairs. We investigated the deformation response of GFP in five selected directions. We found fracture forces widely varying from 100 pN up to 600 pN. We show that straining the GFP structure in one of the five directions induces partial fracture of the protein into a halffolded intermediate structure. From potential widths we estimated directional spring constants of the GFP structure and found values ranging from 1 N/m up to 17 N/m. Our results show that classical continuum mechanics and simple mechanistic models fail to describe the complex mechanics of the GFP protein structure and offer insights into the mechanical design of protein materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available