4.6 Article

Support vector machines-based modelling of seismic liquefaction potential

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/nag.509

Keywords

support vector machines; liquefaction potential; CPT data; SPT data; accuracy

Ask authors/readers for more resources

This paper investigates the potential of support vector machines (SVM)-based classification approach to assess the liquefaction potential from actual standard penetration test (SPT) and cone penetration test (CPT) field data. SVMs are based on statistical learning theory and found to work well in comparison to neural networks in several other applications. Both CPT and SPT field data sets is used with SVMs for predicting the occurrence and non-occurrence of liquefaction based on different input parameter combination. With SPT and CPT test data sets, highest accuracy of 96 and 97%, respectively, was achieved with SVMs. This suggests that SVMs can effectively be used to model the complex relationship between different soil parameter and the liquefaction potential. Several other combinations of input variable were used to assess the influence of different input parameters on liquefaction potential. Proposed approach suggest that neither normalized cone resistance value with CPT data nor the calculation of standardized SPT value is required with SPT data. Further, SVMs required few user-defined parameters and provide better performance in comparison to neural network approach. Copyright (C) 2006 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available