4.7 Article

Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 125, Issue 8, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2273627

Keywords

-

Ask authors/readers for more resources

The temperature-dependent hydrogen-bond geometry in liquid water is studied by x-ray Compton scattering using synchrotron radiation combined with density functional theory analysis. Systematic changes, related to the weakening of hydrogen bonding, are observed in the shape of the Compton profile upon increasing the temperature. Using model calculations and published distribution functions of hydrogen-bond geometries obtained from a NMR study we find a significant correlation between the hydrogen-bond length and angle. This imposes a new constraint on the possible local structure distributions in liquid water. In particular, the angular distortions of the short hydrogen bonds are significantly restricted. (c) 2006 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available