4.8 Article

Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: Preparation, in vitro characterization and in vivo evaluation

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 114, Issue 2, Pages 242-250

Publisher

ELSEVIER
DOI: 10.1016/j.jconrel.2006.05.013

Keywords

insulin; complex; nanoparticles; reverse micelles; oral delivery

Ask authors/readers for more resources

Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 run mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for. 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained. (c) 2006 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available