4.8 Article

The multigene family encoding germin-like proteins of barley.: Regulation and function in basal host resistance

Journal

PLANT PHYSIOLOGY
Volume 142, Issue 1, Pages 181-192

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.106.083824

Keywords

-

Categories

Ask authors/readers for more resources

Germin-like proteins (GLPs) have been shown to be encoded by multigene families in several plant species and a role of some subfamily members in defense against pathogen attack has been proposed based on gene regulation studies and transgenic approaches. We studied the function of six GLP subfamilies of barley (Hordeum vulgare) by selecting single mRNAs for gene expression studies as well as overexpression and gene-silencing experiments in barley and Arabidopsis (Arabidopsis thaliana). Expression of all six subfamilies was high in very young seedlings, including roots. The expression pattern gradually changed from developmental to conditional with increasing plant age, whereby pathogen attack and exogenous hydrogen peroxide application were found to be the strongest signals for induction of several GLP subfamilies. Transcripts of four of five GLP subfamilies that are expressed in shoots were predominantly accumulating in the leaf epidermis. Transient overexpression of HvGER4 or HvGER5 as well as transient silencing by RNA interference of HvGER3 or HvGER5 protected barley epidermal cells from attack by the appropriate powdery mildew fungus Blumeria graminis f. sp. hordei. Silencing of HvGER4 induced hypersusceptibility. Transient and stable expression of subfamily members revealed HvGER5 as a new extracellular superoxide dismutase, and protection by overexpression could be demonstrated to be dependent on superoxide dismutase activity of the encoded protein. Data suggest a complex interplay of HvGER proteins in fine regulation of basal resistance against B. graminis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available