4.4 Article

Modeling large-deformation-induced microflow in soft biological tissues

Journal

THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS
Volume 20, Issue 4, Pages 251-276

Publisher

SPRINGER
DOI: 10.1007/s00162-006-0020-3

Keywords

porous media; homogenization; large deformation; biological soft tissue; microflow; viscoelasticity

Ask authors/readers for more resources

The homogenization approach to multiscale modeling of soft biological tissues is presented. The homogenized model describes the relationship between the macroscopic hereditary creep behavior and the microflow in a fluid-saturated dual-porous medium at the microscopic level. The micromodel is based on Biot's system for quasistatic deformation processes, modified for the updated Lagrangian formulation to account for coupling the fluid diffusion through a porous solid undergoing large deformation. Its microstructure is constituted by fluid-filled inclusions embedded in the porous matrix. The tangential stiffness coefficients and the retardation stress for the macromodel are derived for a time-stepping algorithm. Numerical examples are discussed, showing the strong potential of the model for simulations of deformation-driven physiological processes at the microscopic scale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available