4.5 Article

Multiple features contribute to the use of the immunoglobulin M secretion-specific poly(A) signal but are not required for developmental regulation

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 26, Issue 18, Pages 6762-6771

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00889-06

Keywords

-

Ask authors/readers for more resources

The secretory-specific poly(A) signal (mu s) of the immunoglobulin mu gene plays a central role in regulating alternative RNA processing to produce RNAs that encode membrane-associated and secreted immunoglobulins. This poly(A) signal is in direct competition with a splice reaction, and regulation requires that these two reaction efficiencies be balanced. The mu s poly(A) signal has several unique sequence features that may contribute to its strength and regulation. Site-directed mutations and small internal deletions made in the intact mu gene show that an extensive AU/A-rich sequence surrounding AAUAAA enhances signal use and that, of the two potential downstream GU-rich elements, both of which appear suboptimally located, only the proximal GU-rich sequence contributes substantially to use of this signal. A GU-rich sequence placed at a more standard location did not improve mu s poly(A) signal use. All mu genes tested that contained modified mu s poly(A) signals were developmentally regulated, indicating that the GU-rich sequences, the sequences between them previously identified as suboptimal U1A binding sites, and an upstream suboptimal U1A site do not contribute to mu mRNA processing regulation. Expression of wild-type and modified mu genes in HeLa cells overexpressing U1A also failed to demonstrate that U1A contributes to mu s poly(A) signal regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available