4.8 Article

Quantitative multiplexed profiling of cellular signaling networks using phosphotyrosine-specific DNA-tagged SH2 domains

Journal

NATURE METHODS
Volume 3, Issue 9, Pages 737-744

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nmeth917

Keywords

-

Funding

  1. NCI NIH HHS [R21 CA107785, CA107785] Funding Source: Medline

Ask authors/readers for more resources

Deciphering global signaling networks is of great importance for the detailed understanding of cellular signaling processes controlling many important biological functions. Among signaling processes, tyrosine phosphorylation has a central role. At present, adequate techniques for the global characterization of the tyrosine phosphoproteome are lacking, particularly for the analysis of small amounts of protein. By combining the power of PCR amplification with the unique properties of Src homology region 2 (SH2) domains to specifically recognize tyrosine-phosphorylated proteins, we developed a new proteomic approach, termed oligonucleotide-tagged multiplex assay (OTM). For OTM, multiple SH2 domains are labeled by domain-specific oligonucleotide tags, applied as probes to complex protein mixtures in a multiplex reaction and phosphotyrosine-specific interactions are quantified by PCR. Using OTM we reproducibly quantified differential states of tyrosine phosphorylation with high sensitivity and specificity in small amounts of whole cellular extracts as demonstrated for various tumor cell lines and human leukemia samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available